George Street Journal Oct. 8, 2004


The lure of the lab: New Ship Street space is evidence of Brown's commitment to biomedicine

"There's a feeling that the school is taking off - and you're in on the ground floor," says one new occupant.

by Wendy Y. Lawton

Art Salomon is living on Lean Pockets and caffeine-free Diet Coke. He works 12 hours a day, often on weekends. He doesn't mind. In fact, he is exhilarated. Salomon is setting up his first laboratory.

The lab is on the third floor of 70 Ship St., Brown's new biomedical research building. It consists of two equipment rooms and four lab benches with views of the city's Jewelry District below. Salomon, a 31-year-old chemist, spent much of August shuttling around this roughly 1,000 square feet of space, installing incubators, building custom computers, unpacking syringes and flasks and pipettes.

moving into lab
Chemist Art Salomon moves equipment around his new lab on the third floor of the Ship Street building.

"It's a lot of work," Salomon says. "But it's a thrill. I've been waiting my whole life for this."

Getting a lab up and running is a rite of passage for young scientists. The honor comes after years of academic study and grunt work at someone else's bench. But space to oversee experiments is usually part of the package when a scientist accepts a faculty position. With this reward comes freedom to pursue your own ideas, perfect your techniques, pick your ideal subjects, whether they're molecules or mice.

But a lab demands responsibility, too. There is a staff to hire, equipment to order, grants to pursue. The workload is so heavy, in fact, that most new scientists don't teach during their first year at a university.

"Not getting a lot of sleep," Salomon reports. He wears a grin regardless.

Ship Street is the first off-campus biomedical research building Brown has secured in its 240-year history. Richard Besdine, interim dean of medicine and biological sciences at the Medical School, said the building helps relieve crowding in campus labs.

life science funding

"In 2002, we couldn't even hire replacements for faculty who were retiring," Besdine says. "There was no place to put them."

But Besdine said that Ship Street was built to serve another purpose: attract top-flight scientists. "To recruit good people," he says, "you have to show them good space."

Unlike most science labs, the five-story building is spacious, even airy, with its pale wood, high ceilings and wall-to-wall windows. Work areas feature plenty of computer outlets and storage space; room between benches keeps faculty and students from being cramped. All of the equipment is gleaming new, right down to the autoclaves. Even parking is plentiful.

Salomon raves about Ship Street, particularly the windows: "If you're in a room that's like a jail cell, it's just not inspiring." Salomon says the building, which cost the University nearly $39 million to purchase and renovate, is evidence of Brown's commitment to biomedicine.

"Brown is building its reputation. There are new facilities, new people," he says. "There's a feeing that the school is taking off - and you're in on the ground floor."

The new labs acted as a magnet for many scientists, particularly a handful of promising young biologists and chemists. Salomon, an assistant professor in the Department of Molecular Biology, Cell Biology and Biochemistry, is one of them.

note about chart

During his freshman year at Case Western Reserve University, Salomon found that nicotine protects brain cells from some of the damaging effects of Alzheimer's disease - a controversial finding that wound up in The New York Times. It was Salomon's first research paper.

After graduating from Stanford with a doctorate in chemistry, Salomon went to the Genomics Institute of the Novartis Research Foundation in San Diego, where he became an ace with a mass spectrometer, a hulking piece of equipment that uses a superconducting magnet to smash a peptide, or protein fragment, into even smaller pieces. The machine then measures the mass of these bits and reveals their sequence and amino acid modifications in a fraction of a second.

Understanding these modifications is critical because these changes contribute to disease. Salomon is particularly interested in protein modifications relevant to type II diabetes, allergies and cancer.

moving into lab
Salomon's shopping list for his new lab included three incubators, two safety cabinets, two refrigerators, two tissue culture hoods and a centrifuge.

"When you find the causes of disease, you find targets for drugs to treat them," he says. "We are going to be in the business of curing disease. No single lab will do that. But we're going to contribute to the effort."

To safely handle cancer and other cells, Salomon ordered a slew of equipment in June - long before he arrived in Providence. His shopping list included three incubators, two safety cabinets, two refrigerators, two tissue culture hoods, and one centrifuge. A new $700,000 mass spectrometer is on its way.

Because Salomon's work is completely dependent on computers, which analyze all the data from the mass spectrometer, he ordered high-powered hardware to customize. The machines are so powerful, they can process 10,000 protein sequences per hour - enough information to fill 1,000 floppy discs.

Salomon has spent the last several weeks building his computer systems and unpacking hot plates, water bottles, balances. His shelves are filled with rolls of tin foil - which comes in handy for sterilizing - and plastic bottles labeled "Terrific Broth." (It's bacteria food.) On a recent visit, the lab floor was littered with cardboard and shrink wrap.

Along with attending to important but mundane details, such as securing voice mail, Salomon has been thinking about his staff, which will include one research associate, two grad students and "as many undergrads as I can get." Mostly, though, Salomon has spent hours working on a grant request to the National Institutes of Health. Without money, there's no science.

"Now it begins," he says. "When you get your own lab, you get to lead young minds and develop a career. You're starting a new chapter."